The Latest PHENIX Results on Forward and Central Flow

Eric Richardson
University of Maryland
For the PHENIX Collaboration

RHIC & AGS Annual Users Meeting Brookhaven National Lab June 7-11, 2010 BNL

Outline

- Analyses recently submitted for publication
 - v₂ and v₄ of unidentified hadrons [arXiv:1003.5586]
 - v₂ of heavy flavor quarks [arXiv:1005.1627]
- Ongoing Analyses
 - v_2 of 2H , Λ and ϕ
 - v₂ of unidentified hadrons at forward angles

Hot Off the Presses

All data shown used

- 200 GeV Au+Au
- Some variation of **Reaction Plane Method** to extract flow signal

v₂, v₄ of Unidentified Charged Hadrons [arXiv:1003.5586]

Importance

- v_4 argued to be more sensitive than v_2 in constraining shear_viscosity/entropy (η /s) value
- Also sensitive to freeze-out dynamics
- $v_4/(v_2)^2$ ratio can indicate if full local equilibrium is reached (pure hydro ratio ~ 0.5)

v₂, v₄ h[±] Analysis Footnotes

- Run-7, ~3.6 billion evts
- Large dataset allows precise measurements at low p_T

Reaction Plane Detectors

BBC	3.1< η <3.9
MPC	$3.1 < \eta < 3.7$
RXNP_out	$1.0 < \eta < 1.5$
RXNP_in	$1.5 < \eta < 2.8$
RXNP_full	$1.0 < \eta < 2.8$

- Used 2nd harmonic event plane for both v_2 and v_4
- Tracks identified using DC, PC & EMCal

E. Richardson

U. of Maryland

v₂, v₄ h[±] Results

- RP detectors with different η ranges yield similar signal
- Signal varies $v_2(v_4)$
 - mid-central ~5% (10%)
 - central/peripheral 10% (20%)
- Signals agree within systematic errors ($v_2 = 10\%$, $v_4 = 20\%$)
- Indicates reliable measurement largely free of η and p_T dependent non-flow effects within the measured range $(p_T = 0.5 2.4 \text{ GeV/c})$

v₂, v₄ h[±] Results

- Fig (a) & (b)
 - $-v_2$ and v_4 signal have similar shape
- Fig (c) $v_4/(v_2)^2$
 - Ratio independent of p_T within 0.5 3.6 GeV/c
 - $v_4/(v_2)^2 \approx 0.8$ for $\sim 50 < N_{part} < 200$, which is greater than ideal hydro (dot-dot)
 - adding eccentricity fluctuations
 within hydro model fits data better
 (dash-dash)
 - Even better fit when η added to hadron gas phase and small η added to QGP phase (dot-dash)
 - Ratio significantly increases $N_{part} > \sim 200$
 - Additional fluctuations needed to match central data (solid)
 - Fit with data implies a small η /s

Data gives strong indication of hydrodynamic behavior in matter created at RHIC

These precision measurements should provide stringent constraints for models.

v₂ of Heavy Flavor (HF) Quarks [arXiv:1005.1627]

<u>Importance</u>

- Heavy quarks are good probes for the medium because they are created early in collision by hard scattering
- Because of their large mass they may interact differently with the medium than lighter quarks.
- Matter is strongly interacting, but is it strong enough for heavy quarks to flow? And if so, how large is the flow?

HF v₂ Analysis Footnotes

- Run-4, \sim 700M evts
- Measured heavy flavor using single electrons from semileptonic decays (~10% branching ratio)
- Tracking done using DC, PC, RICH and EMCal
- RICH is primary electron identifier
- Photonic electron bkgrd subtracted using "cocktail method" where background v₂ was estimated using a Monte Carlo simulation with input from measured data
- Photonic cocktail included electrons from π^0 and η decays and γ conversions and direct γ
- Electron v₂ from K decays was also subtracted

HF v₂ Results

- Positive v₂ at low p_T indicates heavy quarks (mainly charm) couple with the medium.
- Shape similar to lighter quarks except at highest p_T.
- Although errors are large at high p_T the signal appears to fall significantly from peak. This indicates a change in energy loss mechanism or a growing contribution from the bottom quark.

Model Comparisons

- All models include quark coalescence
- Models that best describe low p_T data are:
 - Greco et al. with charm flow
 - Zhang et al. with larger charm quark parton-scattering cross section ($\sigma = 10 \text{ mb}$)
 - van Hees et al. with resonance interactions

Indicates

- heavy quarks participate in the medium
- Coalescence and resonance are large contributors to HF v₂ at low p_T

6/7/10

Ongoing Analyses

v_2 of 2H , Λ and ϕ

Importance

- Does constituent quark scaling continue to higher p_T with heavier hadrons?
- Multi-strange hadrons (φ) are expected to have a small hadron cross section rendering them less sensitive to the later hadronic stage of the collision.
- Therefore, the primary origin of their flow would develop at the partonic level, making them a good probe for the QGP.

6/7/10 E. Richardson

²H, Λ and φ Analysis Footnotes

- Run-7
- Improved RP resolution with RXNP over BBC used in Run-4
- Identified particles using EMCal, TOF. E. and TOF. W.

²H and ϕ v₂ Results

- Run-7 and Run-4 measurements are consistent
- Run-7 has improved statistics and RP resolution allowing for higher p_T measurement

2 H, Λ and ϕ v_{2} Results

- Mass ordering is followed at $p_T < 2 \text{ GeV/c}$
- At p_T 2 5 GeV/c ϕ follows other mesons (π, K) despite having a mass closer to proton and Λ baryons
- φ exhibits strong flow signal indicating flow develops at partonic level because of its small hadronic cross section
- A signal similar to proton
 - similar mass
 - same quark number
- 2 H signal becomes larger than proton at $p_T \approx 3$ GeV/c and is expected to rise further

KE_T Scaling

- Meson and Baryon transverse kinetic energy (KE_T) scaling diverges between ~1 - 4 GeV
- KE_T/n_q scaling consistent for all particles below ~1 GeV
- Deviation at higher values indicates change in v₂ and/or particle production mechanism

v₂ of Unidentified Hadrons at Forward Angles

Importance

- Measured using PHENIX's forward angle spectrometers (Muon Arms).
- The muon arms are unique because they have an η coverage of |1.2| < η < |2.2| and are the only detectors at RHIC capable of measuring $v_2(p_T)$ over the entirety of this η region.
- This measurement will help to better understand how v_2 changes with η .

Forward η v₂ Analysis Footnotes

- Run-7
- Estimated Ψ using opposite arm RXNP from muon arm
- Used MuTr and MuID for tracking
- Identified hadrons from muons by applying a momentum cut to tracks that stop in the MuID

6/7/10 E. Richardson

U. of Maryland

19

Comparison to mid-rapidity

Different η regions yield similar results.

Comparing different \(\eta \)

• Plotting $v_2(p_T)$ at 4 different η ranges from 0->3.

• Data points indicate a falling signal with increasing η , but this is not certain when including errors.

Submission for Publication Imminent

 v_2 of High $p_T \pi^0$'s

Important for understanding path length dependence of jet energy loss

Stay tuned!!!

Conclusion

- PHENIX has a variety of exciting new flow measurements
- With the help of theorists these measurements should bring new insights into RHIC collisions and the properties of the QGP
- New insights will continue with the newly collected 200 GeV and low energy Run-10 data sets and PHENIX's ongoing detector upgrades programs such as VTX & FVTX

Backup

HF v₂ background

$$v_{2_e}^{non-\gamma} = \frac{(1+R_{NP})v_{2_e} - v_{2_e}^{\gamma}}{R_{NP}}$$
 $v_{2_e}^{ron-\gamma} = \frac{(1+R_{NP})v_{2_e} - v_{2_e}^{\gamma}}{R_{NP}}$
 $v_{2_e}^{ron-\gamma} = \frac{(1+R_{NP})v_{2_e} - v_{2_e}^{\gamma}}{R_{NP}}$

$$v_{2e}^{\text{non-}\gamma}$$
 = non-photonic electron

$$v_{2e}^{\gamma}$$
 = photonic electron

$$v_{2e}$$
 = inclusive electron

$$R_{NP}$$
 = ratio of non-photonic/photonic yields

$$v_{2_e}^{heavy} = \frac{v_{2_e}^{non-\gamma} - R_{KNP}v_{2_e}^K}{1 - R_{KNP}}$$
 $v_{2_e}^{heavy} = \text{heavy flavor}$
 $v_{2_e}^{heavy} = \text{Kaon}$
 $R_{KNP}^{K} = \text{ratio of electron yield from kaon decays}$

$$v_{2e}^{heavy}$$
 = heavy flavor

$$v_{2e}^{K} = Kaon$$

$$R_{KNP}$$
 = ratio of electron yield from kaon decays to all other non-photonic sources

Hadron Identification

- Use Muon Identifier (MuID)
 - 5 alternating layers of steel absorber and low resolution tracking chambers
- Use only tracks that <u>stop</u> in MuID.
- Plot p₇ distribution of stopped tracks.

U. of Maryland

MulD

27

Comparison to mid-rapidity

- Due to differences in initial particle composition and the steel absorber in front of the muon arms, the particle composition used to measure v₂ at mid and forward angles isn't exactly apples to apples.
- However, a comparison is still of interest.

Introduction to Flow

- Flow is the asymmetric distribution of produced particles in the azimuthal direction with respect to the reaction plane angle (Ψ)
- Distribution can be described by Fourier expansion
- v_2 and v_4 are the anisotropy parameters which allow for quantifying the size of the asymmetry

$$\frac{dN}{d\Delta\phi} \alpha 1 + 2v_2\cos 2(\Delta\phi) + 2v_4\cos 4(\Delta\phi) + ...$$

$$\Delta\phi = \text{angle of particle wrt }\Psi$$

6/7/10 E. Richardson U. of Maryland

Reaction Plane Method

 All flow results shown here used some variation of the Reaction Plane Method

Calculation Method

$$\mathbf{v_n^{raw}} = \langle \cos(\mathbf{n}(\Delta\phi)) \rangle$$

n = Fourier harmonic
being measured

Fit Method

$$\frac{dN}{d\Delta\phi} = N_0(1 + 2\mathbf{v_n^{raw}}\cos(n\Delta\phi))$$

In-Out Method

$$\mathbf{v_n^{raw}} = \frac{\pi}{4} \frac{(N_{in} - N_{out})}{(N_{in} + N_{out})}$$

corrected flow signal
$$\Rightarrow$$
 $\mathbf{v_n} = \frac{\mathbf{v_n}^{\text{raw}}}{\text{Res}}$

Res = resolution of reaction plane detector

6/7/10

E. Richardson

U. of Maryland

PHENIX Reaction Plane Detectors

BBC

PbWO₄ Calorimeter

2 concentric rings of scintillator paddles

Quartz Cherenkov radiators with mesh PMT's

$$3.1 > |\eta| < 3.7$$

$$3.1 > |\eta| < 3.9$$

$$1.0 > |\eta_{Out}| < 1.5$$

 $1.5 > |\eta_{In}| < 2.8$

Reaction Plane Resolution

2 sub-event method

Re
$$s = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi \exp\left(\frac{-\chi^2}{4}\right) \left[I_{(n-1)/2}\left(\frac{\chi^2}{4}\right) + I_{(n+1)/2}\left(\frac{\chi^2}{4}\right)\right]$$

where

$$\chi = \sqrt{2N}$$

N = number of particles

 $I_{\rm x}$ = modified Bessel functions

3 sub-event method

$$\operatorname{Re} s(\Psi^{a}) = \sqrt{\frac{\left\langle \cos(n(\Psi^{a} - \Psi^{b})) \right\rangle \left\langle \cos(n(\Psi^{a} - \Psi^{c})) \right\rangle}{\left\langle \cos(n(\Psi^{b} - \Psi^{c})) \right\rangle}}$$

Finds Ψ^a Res using Ψ^b and Ψ^c

2 sub-event estimation

Re
$$s(\Psi^{ab}) = \sqrt{2(\cos(n(\Psi^a - \Psi^b)))}$$

Only used for BBC where Res is poor

6/7/10

High $p_T \pi^0 v_2$ Importance

- v₂ is sensitive to path length dependence of energy loss
- v₂ of high p_T particles can lead to a better understanding of jet energy loss and jet suppression
- How strongly coupled is the jet to the medium?

Short path
Reaction Plane

Collision
Medium

Long path

Stay tuned!!!

v₂ Highlights at RHIC

- h[±] v₂ has been measured by all 4 RHIC experiments
- Each measuring a strong signal indicating medium is dense, strongly interacting and thermalizes quickly before expansion.

v₂ Highlights at RHIC

- h[±] v₂ has been measured by all 4 RHIC experiments
- Each measuring a strong signal indicating medium is dense, strongly interacting and thermalizes quickly before expansion.
- Low p_T data is described well by hydrodynamic models indicating the medium behaves like a liquid.

v₂ KE_T/n_q scaling

• Different particles exhibit KE_T/n_q scaling suggesting flow develops at the quark level, which provides strong evidence for QGP formation

